Process planning by recognizing and learning machining features

نویسنده

  • A. K. W. CHAN
چکیده

We present two methods for process planning of 2.5D machined parts. The first method is based on feature recognition from a 3D model. We embedded the shape and the machining method of two generic classes of machining features in a set of OPS5 rules to form a machining feature recognizer. When successfully recognizing a machining feature, machining instructions, in terms of the tool entrance face, drive face and part face, for cutting the machining feature will be generated and further processed to produce NC codes. The second method is based on learning the shape and the machining method of the machining feature. When a machining feature cannot be recognized by the former feature recognizer, the user can use the machining feature as a positive training example to instruct the system about the tool entrance face, drive face and part face of the machining feature. The system then builds a new rule, using the boundary shape of the unrecognized machining feature as the rule's matching condition and the acquired machining instruction as the rule's action. The new rule can be used subsequently for process planning of machining features that have shapes similar to the memorized one.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequencing of interacting prismatic machining features for process planning

Today, feature-based process planning has been popular in academia and industry with its ability to rigorously integrate design and manufacturing. To date, research on feature sequencing is mainly focused on using expert systems or knowledge-based systems, geometric based approaches, unsupervised-learning or artificial neural network, and genetic algorithms. The approach presented in this paper...

متن کامل

A knowledge-based auto-reasoning methodology in hole-machining process planning

In process planning, how to obtain an optimal process planning is the essential of computer-aided process planning (CAPP) system. The main goal of CAPP system is to derive manufacturing features and machining operations from a design model and sequence the machining operations of the part in a feasible (by some technological constraints) and effective (by some economical standards) order. In th...

متن کامل

Decomposition of forging dies for machining planning

This paper will provide a method to decompose forging dies for machining planning in the case of high speed machining finishing operations. This method lies on a machining feature approach model presented in the following paper. The two main decomposition phases, called Basic Machining Features Extraction and Process Planning Generation, are presented. These two decomposition phases integrates ...

متن کامل

An Adaptive Process Planning Method Based on Features and Intelligent Agents for the Manufacturing of Large-Scale Parts

Process planning plays an important role for ensuring machining quality, reducing production cost, and shortening leading time. Since there are many uncertainty factors for manufacturing resources in a changing manufacturing environment, especially for small batch manufacturing of large scale parts requiring long process planning time, manufacturing companies are facing significant challenges o...

متن کامل

Generating Alternative Interpretations of Machining Features

One of the major difficulties in extracting machining features is the lack of a systematic methodology to generate alternative ways of manufacturing a machined part. Most of the early research in feature extraction and process planning has not considered this aspect, and has focused on the generation of a single interpretation. In this paper, we propose a featurebased approach to generating alt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017